Warum Engagement-Data so wertvoll für Targeting ist

Beim App Marketing ging es lange Zeit nur um Volumen: Mit so geringen Kosten wie nötig so viele Nutzer wie möglich für eine App zu generieren. Doch die Technik hat sich weiterentwickelt und dementsprechend auch der Wettbewerb. Mit mehr als drei Millionen Anwendungen in den App-Stores scheint sich die Haltung Qualität vor Quantität zu bewähren.

User nutzen nur wenige Apps regelmäßig. Eine Umfrage von Millward Brown Digital ergab, dass nur 28 Prozent aller Mobile-Nutzer mehr als vier bis sechs Apps pro Tag verwenden, auch wenn durchschnittlich über 40 Apps auf Smartphones installiert sind.

Dabei verlangen Kunden nach einem immer besseren App-Erlebnis. Gleichzeitig erwarten sie auch ein besseres Kundenerlebnis, wenn es um Werbung geht. Der Nielsen Connected Device Report von Q1 2016 fand heraus, dass 65 Prozent der befragten Nutzer Mobile Anzeigen unangemessen und aufdringlich finden, insbesondere, wenn diese irrelevant sind. Werbetreibende und App-Entwickler verfolgen daher beide das gleiche Ziel: Die einschlägigen Anzeigen an die richtigen Nutzer bringen und somit ein besseres Targeting. Werbetreibende streben nach Kunden mit einer hohen Lifetime Value (LTV) und Entwickler wollen Ads, die relevant für die App-Nutzer sind und so zu einer höheren Konvertierungsrate führen.

Während Targeting auf seinem Höhepunkt ist, sollten Entwickler und Advertiser über den Tellerrand hinausblicken, um weitere starke, ungenutzte Möglichkeiten anzugehen. Viele Entwickler und Werbetreibende konzentrieren sich nur auf Targeting-Kriterien wie Alter, Geschlecht und Ort. Während diese Methode die Zielgruppe zwar eingrenzt, sagt sie jedoch nichts über deren Qualität aus. Hier kommt das Verständnis für Engagement Level ins Spiel.

Wie werden Engagement Level gemessen?

  1. Durch einen Klick auf einen Banner zeigen User, dass sie entweder an diesem beworbenen Produkt interessiert sind, oder an einem ähnlichen Produkt aus derselben Kategorie.
  2. Eine App-Installation, nachdem die Anzeige gesehen wurde, impliziert, dass der User an den Inhalten der App interessiert ist. Darüber hinaus zeigt dies, dass der Nutzer außerdem an ergänzenden Produkten interessiert ist, die die Kundenbindung an die installierte App verstärken.

In-App Aktivität

Außerdem ist es möglich, das Engagement anhand des Nutzerverhaltens in der App zu analysieren. Dies bedarf keiner weiteren Klicks auf Anzeigen oder Downloads. Allein die Tatsache, dass das Gerät signalisiert, dass Werbung angezeigt werden könnte, indem durch die App navigiert wird, macht die Interaktion des Nutzers deutlich. Dazu offenbaren Informationen, die nach der Installation eingeholt werden, wie zum Beispiel ergänzende Messgrößen zum User Engagement, bezogen auf In-App-Käufen und anderen Aktionen. Beispiele sind das Erreichen neuer Levels in einem Spiel, Produkte in den Warenkorb zu schieben oder andere Infos zur Customer Journey.

Diese Aktivitätsdaten können aggregiert werden, um eine differenzierte Persona für jedes Gerät zu schaffen - somit eine detaillierte Quelle an Targeting-Informationen für sowohl Werbetreibende als auch Entwickler. Dies hilft dabei, High-Value Kunden zu identifizieren und anzusprechen und so die App-Monetarisierung und Umsatzgenerierung zu steigern.

 

(Bildquelle: shutterstock)

Targeting je nach Kundenbindungslevel

Die richtige Erfassung von Daten ist der Schlüsselfaktor: Demographische Attribute wie Geschlecht, Altersgruppe und Ort ändern sich selten, wenn überhaupt. Im Gegensatz zu diesen relativ statischen Infos ist das User Engagement Level dynamisch: Es baut sich über die Zeit auf und ist variabel. Eine hochentwickelte Daten-Management-Plattform (DMP) ist nötig, um diese Daten zu verstehen und im Laufe der Zeit zu revalidieren und anzupassen.

Advertiser können das User-Engagement-Level als ein zusätzliches Targeting-Kriterium verwenden, um die potentielle Qualität eines neu gewonnenen Nutzers zu bewerten. Ein Beispiel: Eine Fashion-App möchte junge Frauen ansprechen. Mit passenden Daten zum User Engagement kann über den Aspekt des Geschlechts hinaus speziell die Zielgruppe erreicht werden, die ein spezifisches Interesse an Fashion zeigt - sichtbar durch hohe Klickraten auf Fashion-Anzeigen oder eine hohe Aktivitätsrate mit anderen Mode-bezogenen Apps. Zusätzlich zu einem User-spezifischen Targeting können Entwickler ihre bestbezahltesten Anzeigen den aktivsten Nutzer anzeigen und so das Monetarisierungspotenzial der App verstärken.

Indem bereits existierende Targeting-Methoden intelligent erweitert werden, können durch User-Engagement-Level auch andere Indikatoren bestimmt werden, zum Beispiel die Absprungrate. Solche Messgrößen ermöglichen es Entwicklern, den User-Lifecycle in der App zu verstehen und neue Kunden zum richtigen Zeitpunkt zu akquirieren.

Daten-Management-Plattformen sind zusammen mit dynamischen Daten, wie User-Engagement-Level, zu einem unverzichtbaren Tool in der zielgenauen Ausspielung von Werbung geworden. Entwickler und Werbetreibende verstehen immer mehr, dass Quantität out ist und Qualität in. Bei den erfolgreichsten Apps kommen DMPs bereits weitreichend zum Einsatz, um Kunden so gezielt wie möglich anzusprechen. Wer nicht bald auf diese Welle aufspringt, wird es im Big-Data-Meer schwer haben.

Autor: Freddy Friedmann arbeitet als Chief Product Officer bei der Glispa Global Group, wo sein Fokus auf der Entwicklung und Leitung von glispas AdTech-Strategie liegt.

(jm)

0

Hat Ihnen der Artikel gefallen?
Abonnieren Sie doch unseren Newsletter und verpassen Sie keinen Artikel mehr.

Mit einem * gekennzeichnete Felder sind Pflichtfelder!

RSS Feed

Neuen Kommentar schreiben

Entdecken Sie die Printmagazine des WIN-Verlags