Data Mining Studie 2012

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print

Data Mining Studie 2012

Share on facebook
Share on twitter
Share on linkedin
Share on xing
Share on whatsapp
Share on email
Share on print
lupe

In Marketing und Vertrieb spielt das Customer Relationship Management (CRM) eine Schlüsselrolle: Hier wird entschieden, welche bestehenden Kunden in welcher Form betreut werden, welche potenziellen Neukunden wie angesprochen und welche ehemaligen Kunden zurück gewonnen werden sollen. Die Beantwortung dieser Fragen ist von strategischer Bedeutung und entscheidet über den Erfolg des gesamten Unternehmens.


Die diesjährige Data Mining Studie des BI-Analysten- und Beraterhauses mayato legt den Schwerpunkt auf die Kundenreaktivierung als wesentlichen Bestandteil von Customer Relationship Analytics. Dazu traten vier Data-Mining-Produkte gegeneinander an: Der SAS Enterprise Miner 7.1, der STATISTICA Data Miner 10 von StatSoft, der IBM SPSS Modeler 14.2 und das SAP BW 7 (Data Mining Workbench).


Potenziale erkennen und gezielt handeln


Der Test wurde anhand eines praxisnahen Analyseszenarios durchgeführt: Ein großer Online-Versandhändler möchte Erstbesteller, die nach einer definierten Zeitspanne kei-ne Folgebestellung tätigen, durch bestimmte Aktionen zu einem Wiederkauf anregen. Dabei sollen nur die Kunden einen Einkaufsgutschein erhalten, bei denen mit hoher Wahrscheinlichkeit davon auszugehen ist, dass sie ohne diesen Anreiz keine weitere Bestellung getätigt hätten.


Diese Kunden galt es auf Basis der vorliegenden Kundenhistorie mithilfe eines Prognosemodells vorherzusagen. Dazu wurden neben etablierten Methoden wie Entscheidungsbäumen auch neuere Prognoseverfahren wie Support Vector Machines (SVM) eingesetzt und für jedes getestete Tool separat auf Praxistauglichkeit und Prognosequalität geprüft. Unter Einbezug der errechneten Prognosen sollen die abwanderungsgefährdeten Kunden gezielt zurück gewonnen werden.


Die Bewertung der Tools stützt sich auf eine breite Anzahl an Einzelkriterien. Sie decken sowohl Funktionalitätsaspekte (Funktionsumfang in den Kategorien Datenvorverarbei-tung, Analyseverfahren und Parametrisierung, Ergebnisvisualisierung, Gesamteffizienz) als auch die Benutzerfreundlichkeit (Stabilität, Ausführungsgeschwindigkeit, Dokumenta-tion, Bedienung) ab.


Im Endergebnis zeigen sich starke Unterschiede insbesondere im Bedienkomfort, bei der Funktionalität sowie bei den Möglichkeiten der Ergebnisauswertung.


Testfeld und Praxis


In der neuen Studie werden erstmals die drei marktführenden Suiten von SAS, StatSoft und IBM SPSS miteinander verglichen. Um zu beurteilen, wie sich ein klassisches BI-Werkzeug im Vergleich zu den etablierten Data-Mining-Suiten schlägt, wurde die SAP BW Data Mining Workbench mit ins Testfeld aufgenommen.


Bereits früh im Testablauf werden Stärken und Schwächen der jeweiligen Tools sichtbar: Die besondere Stärke von SAS liegt in der Einbettung des Enterprise Miner in eine leistungsfähige BI-Gesamtarchitektur, die neben der Analyse flexible Möglichkeiten der Da-tenhaltung oder weitreichende ETL-Funktionen bietet.


IBM SPSS ist es gelungen, hohe Funktionalität in eine moderne, intuitive Oberfläche zu verpacken: Der Modeler bietet durch sein logisches Bedienkonzept und zahlreiche praktische Detaillösungen die beste Ergonomie im Testfeld.


 StatSoft punktet mit einer sehr breiten Funktionsvielfalt: Der Data Miner enthält als einziges Tool im Test zusätzlich zu den gängigen Data-Mining-Verfahren stets das vollstän-dige StatSoft-Statistikmodul. Dies schließt z. B. mächtige Datenvorverarbeitungsmöglichkeiten, eine breite Palette an statistischen Testverfahren sowie eine große Anzahl an frei konfigurierbaren Grafiken ein. Bei komplexen Data-Mining-Szenarien erleichtern viele dieser Funktionalitäten die tägliche Arbeit oder ermöglichen überhaupt erst eine umfassende Analyse.


Mit bereits deutlichem Abstand folgt das SAP BW mit der Data Mining Workbench: Ihr merkt man vor allem an der unübersichtlichen und wenig logisch aufgebauten Oberfläche an, dass sie seit mehreren Jahren keine substanziellen Aktualisierungen mehr erfahren hat. Hinzu kommen deutliche praktische Einschränkungen in der Funktionalität.


Bedienkonzepte und Weiterentwicklung


Die hohe Funktionsmächtigkeit und die vielfältigen Parametrisierungsmöglichkeiten der Suiten führen allerdings zu vergleichsweise langen Einarbeitungszeiten. Es wird zudem immer schwieriger, ein einziges Bedienkonzept für alle denkbaren Anwendergruppen bereit zu stellen. Als Konsequenz gehen manche Hersteller dazu über, mehrere Bedienoberflächen für unterschiedliche Nutzergruppen zur Verfügung zu stellen:


-SAS bietet zusätzlich zur klassischen Modellbildung mit dem Rapid Predictive Modeler eine (in der aktuellen Version nochmals überarbeitete) einfache, separate Data-Mining-Umgebung mit sinnvoll begrenzten Parametrisierungsoptionen an. Hier konnten im Test bereits mit den Standardparametern in kurzer Zeit akzeptable Ergebnisse erzielt werden, die auf Wunsch manuell weiter verfeinert werden können.


-StatSofts Beitrag zur Automatisierung des Prozesses liegt in alternativ angebotenen, vorgefertigten Data-Mining-Rezepten für Standard-Prognoseaufgaben. Hier kann der Nutzer ohne viel Aufwand eine Vielzahl an Vorhersagemodellen erzeugen.


-IBM SPSS stellt unter anderem mit dem automatischen Klassifizierer eine vergleichbare Funktionalität bereit: Der Anwender kann in einem Dialog mehrere Prognosemodelle mit unterschiedlichen Verfahren und Parametereinstellungen automatisch berechnen und deren Ergebnisse vergleichen.


Darüber hinaus erweitern die Toolhersteller insbesondere die Komponenten und Module ihrer Produkte, die für einen schnellen Einstieg in Data-Mining-Analysen besonders wichtig sind. Zu den Erweiterungen gehören Neuentwicklungen und weitere Differenzie-rungen ihrer Bedienkonzepte, ausführliche Dokumentationen inklusive Online-Hilfen und praxisnaher Tutorials sowie innovative Ansätze zur Automatisierung des Data-Mining-Prozesses.


 

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on xing
XING
Share on whatsapp
WhatsApp
Share on email
E-Mail
Share on print
Drucken

Ihre Meinung zum Artikel

Abonnieren
Benachrichtige mich bei
guest
0 Comments
Inline Feedbacks
View all comments

Andere Leser haben sich auch für die folgenden Artikel interessiert

Worauf sollten Unternehmen bei der Kundenbindung achten? In einem aktuellen Report gibt Twilio, Plattformanbieter für Cloud-basierte Kommunikation, anhand von fünf wichtigen Entwicklungen 2019 eine Orientierung, in welchen Bereichen Unternehmen die Kundenbindung in diesem Jahr weiterentwickeln sollten.

Redaktionsbrief

Tragen Sie sich zu unserem Redaktionsbrief ein, um auf dem Laufenden zu bleiben.

Wir wollen immer besser werden!

Deshalb fragen wir SIE, was Sie wollen!

Nehmen Sie an unserer Umfrage teil, und helfen Sie uns noch besser zu werden!

zur Umfrage

Aktuelle Ausgabe

Topthema: Das sind die Trends im e-commerce

Trends 2021

Mehr erfahren

Tragen Sie sich jetzt kostenlos und unverbindlich ein, um keinen Artikel mehr zu verpassen!

    * Jederzeit kündbar

    Entdecken Sie weitere Magazine

    Schön, dass Sie sich auch für weitere Fachmagazine unseres Verlages interessieren.

    Unsere Fachtitel beleuchten viele Aspekte der Digitalen Transformation entlang der Wertschöpfungskette und sprechen damit unterschiedliche Leserzielgruppen an.